

DESERT Low cost water desalination ans sensor technology compact module

Gaetano Alessandro Vivaldi and Salvatore Camposeo the partners Lucas Galera Emilio Nicolas Anna Maria Stellacci Phelyppe Lebaylly

Water JPI WaterWorks2015 Cofunded Call 8 May 2018, Larnaca

- I. Scientific and technological progress
- 2. Collaboration, coordination and mobility
- 3. Stakeholder/industry engagement
- 4. Dissemination of the results
- 5. Identified problems or specific risks

2. Collaboration, coordination and mobility

3. Stakeholder/industry engagement

4. Dissemination of the results

5. Identified problems or specific risks

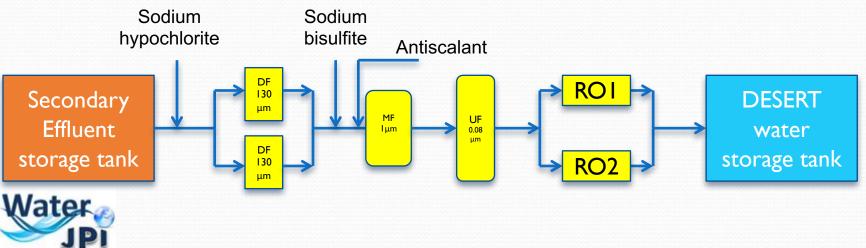
<u>WPI:</u> Integration of two water compact modules: both solar powered modules HidroNIC-Desal and HidroNIC-Fert

ROLDAN (SPAIN)

CONTAINERS WITH PHOTOVOLTAIC PANELS

BARI (ITALY)

<u>Two</u> experimental platforms

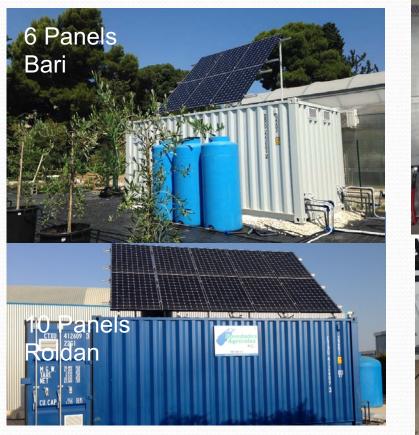


WASTEWATER TREATMENT

HIDRONIC DESAL

CATEGORY	PARAMETER	UNIT	AVERAGE CON	CENTRATIONS	REMOVAL
CATEGORY	PARAIVIETER	UNIT	SW	DW	EFFICIENCY
	EC	dS/m	1.6	0.8	53.5%
Physicochemical	SAR	meq/L	5.7	4.3	23.9%
	Turbidity	NTU	1.0	0.4	60.0%
	TSS	mg/L	4.6	1.8	61.6%
Macronutrients	NO ₃ ⁻	mg/L	9.2	3.5	61.7%
	PO ₄ ³⁻	mg/	f 700	1.0	-140.9%
	К	mg/		12.8	57.5%
	Ca	mg/		21.9	61.2%
	Mg	mg/		8.1	64.3%
	SO4 ²⁻	mg/		31.6	75.0%
	Fe	mg/L	0.07	0.05	29.8%
	Mn	mg/L	0.20	0.08	60.3%
Micronutrients / phytotoxic	В	mg/L	0.71	0.56	20.7%
	CI⁻	mg/L	251.7	106.1	57.8%
	Na	mg/L	194.6	92.0	52.7%
Microbiological	E. coli	cfu/100 mL	163.8	<-	99.4%

HidroNic Fert. Xilema. Automatic fertilizer supply equipment through electrovalves and venturis. Distribution of fertilizers.

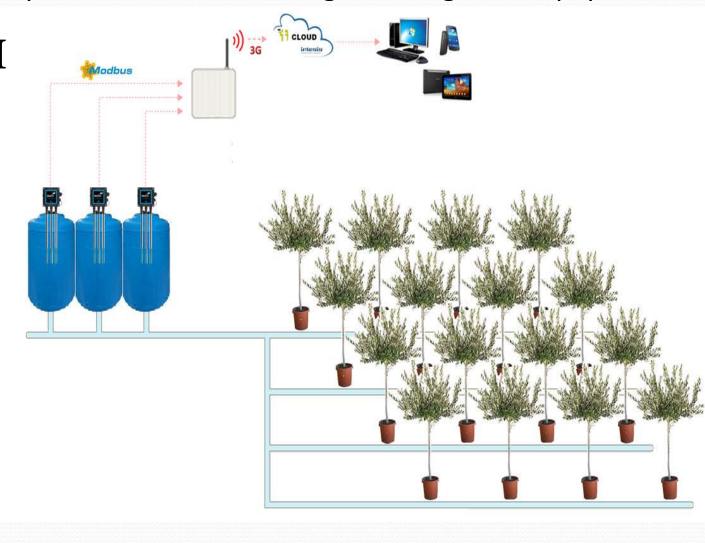

- >Output mesh filter. Mixing and filtering different fertilizers.
- **Blower pump** to carry out the aeration process, in the mixture of the fertilizer tanks.
- Fertilizer tanks. 4 fertilizer tanks and I acid tank.

The integrated water treatment system + Fertirrigation will work autonomously, that is, we will produce the energy that we will consume whenever we have sun. The solar energy system consists of:

Solar panels. 6-10 solar panels, composed of 72 polycrystalline cells, 327 W and 6.46 A. = 3270 W peak and 64.6 A.

Inverter. Solar charge controllers, solar energy inverters and electronic regulators.

Batteries. The energy produced are stored in 4 batteries of 12 vdc and 220 A / h. = 48 Vdc and 220 A / h.


• WP2: Development of on-line intelligent fertigation equipment

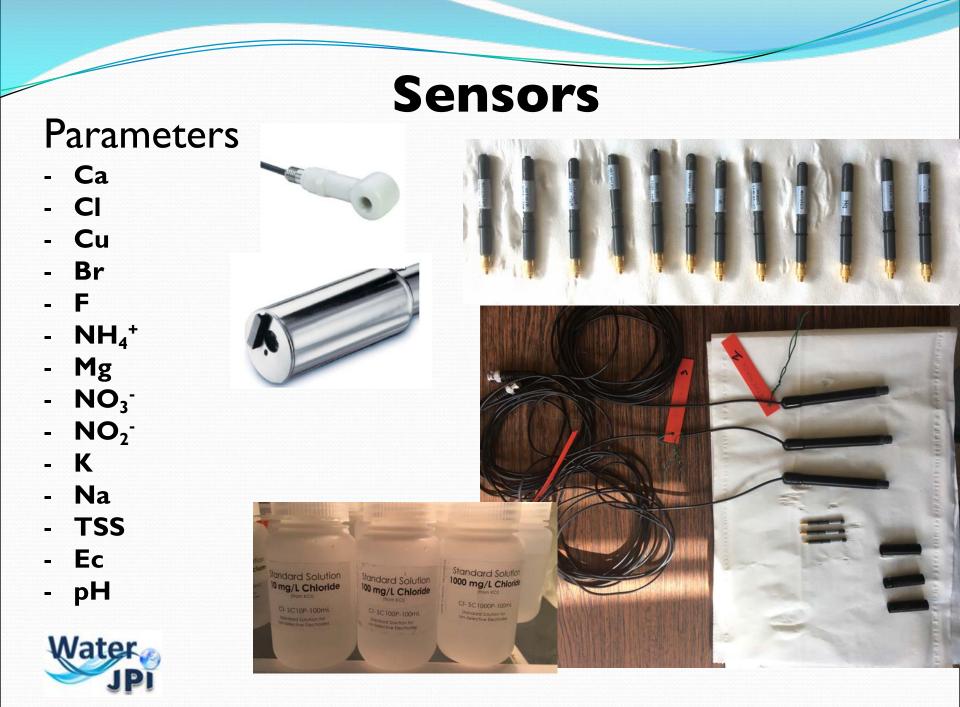
QUANTUM - Hardware: PLC Control units Rooter Sensors....

- Software:

Vater

DSS

HARDWARE components



SWI-001

-AL032DBZ

pt1000Class tempSensor;

// INIZIO DEFINIZIONE DEI PARAMETRI DI CALIBRAZIONE

/ / Cali	bration concentrations solutions used in the process
//	
	point1 10.0
	point2 100.0 point3 1000.0
//	points 1000.0
	bration voltage values for Calcium sensor
	point1_volt_Ca 2.144
	point2_volt_Ca 2.268
	point3_volt_Ca 2.366
// // Cali //	bration voltage values for NO3 sensor
	point1_volt_NO3 3.080
#define	point2_volt_NO3 2.900
	point3_volt_NO3 2.671
// // Cali //	bration voltage values for Fluor sensor
	point1_volt_F 2.847
	point2_volt_F 1.574
	point3_volt_F 1.380
// // Cali //	bration values for chloride sensor
	point1_volt_Cl 2.852
#define	point2_volt_Cl 2.588
	point3_volt_Cl 2.330
	ne the number of calibration points
// #define	NUM_POINTS 3

// FINE PARAMETRI DI CALIBRAZIONE

//------// Read the chloride sensor

//=
float chlorideVolts = chlorideSensor
float chlorideValue = chlorideSensor
// delay(500);

USB.print(F(" Chloride: ")); USB.print(chlorideVolts); USB.print(F(" ppm/mg*L-1 | "));

USB.print(F("\n"));
// SWIonsBoard.OFF();

// Read and store the values in the Modbus registers
regs[MB_0] = (int) flourideValue;
regs[MB_1] = (int) calciumValue;
regs[MB_2] = (int) N03Value;
regs[MB_3] = (int) chlorideValue;
regs[MB_3] = (int) (tempValue*10);
regs[MB_5] = PWR.getBatteryLevel();
regs[MB_10] = (int) (flourVolts*1000);
regs[MB_11] = (int) (CaVolts*1000);
regs[MB_12] = (int) (N03Volts*1000);
regs[MB_13] = (int) (chlorideVolts*1000);

counter = 0;

} counter = counter +1;

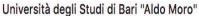
}

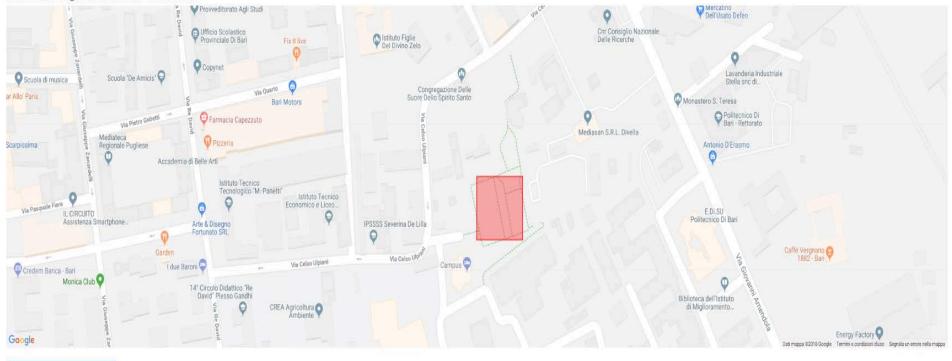
Serial monitor

		144															
	delay(10)	Colcium :	1.1391336917	Volts Col	cium : 0.0000	000081 ppm/mg*L-1	L N03	2.2626512963 V	olts NO	3: 102	874.78906258	00 non/no*L-1	I Fluerid	e: 3.2256250381 Volt	s Fluoride	e: 1.73236322	
	nerna(10)					N000054 ppm/mg*L-1		: 2.5307188034 V						3.2310941219 Volts			
Ľ.						N00051 ppm/mg*L-1		: 2.5435318946 W						3.2357194423 Volts			
٢.		Calcium :	1.1166875362	Volts Cal	lcium : 0.0000	000051 ppm/mg*L-1	I N03	: 2.5480024814 V	olts NO	3: 437	9.2119148625	ppm/mg*L-1	Fluoride:	3.2393751144 Volts	Fluoride:	1.6591784954	
		Calcium :	1.1089338064	Volts Cal	lcium : 0.0000	N000043 ppm/mg*L-1	I N03	: 2.5449376106 V	olts NO	3: 453	2.9741210937	ppm/mg*L-1	Fluoride:	3.2427196582 Volts	Fluoride:	1.6418497562	
						N000044 ppm/mg*L-1		: 2.5439864582 V						3.2451875209 Volts			
						N000044 ppm/mg*L-1		: 2.5484999256 V					Fluoride:	3.2476572990 Volts	Fluoride:	1.6165978882	
						N000047 ppm/mg*L-1		: 2.5550000667 V						3.2493119239 Volts			
						N000049 ppm/mg*L-1		: 2.5556566715 W						3.2508447170 Volts			
						N000051 ppm/mg*L-1		: 2.5579373836 V						3.2525312900 Volts			
						N000053 ppm/mg*L-1		: 2.5622513294 W						3.2536873817 Volts			
						N000053 ppm/mg*L-1		: 2.5562505722 V						3.2547512054 Volts			
						N000056 ppm/mg*L-1		: 2.5607500076 V						3.2558441162 Volts			
						N000060 ppm/mg*L-1		: 2.5624706745 V						3.2565944194 Volts			
						N000064 ppm/mg*L-1 N000067 ppm/mg*L-1		: 2.5670626163 V : 2.5727822780 V						3.2574374675 Volts			
						N000067 ppm/mg*L-1 N000069 ppm/mg*L-1		: 2.5727822780 V : 2.5791888236 V						3.2581250667 Volts 3.2587499618 Volts			
						N000072 ppm/mg*L-1		: 2.5755319595 V						3.2595008267 Volts			
						N000072 ppm/mg*L-1 N000076 ppm/mg*L-1		: 2.5817818641 W						3.2600011825 Volts			
						N00079 ppm/ng*L-1		: 2.5877187252 V						3.2603137493 Volts			
						N00083 ppm/mg*L-1		: 2.5816562175 V						3.2607183456 Volts			
						N00085 ppm/mg*L-1		: 2.5876882076 V						3.2610945701 Volts			
						N00089 ppm/mg*L-1		: 2.5849719047 V						3.2614393234 Volts			
						000093 ppm/mg*L-1		: 2.5852513313 W						3.2614684104 Volts			
		Calcium :	1.1487221717	Volts Cal	cium : 0.0000	000099 ppm/mg*L-1	I N03	: 2.5816249847 V	olts NO	3: 299	9.0405273437	ppm/mg*L-1	Fluoride:	3.2617189884 Volts	Fluoride:	1.5467891693	
		Calcium :	1.1489343643	Volts Cal	lcium : 0.0000	000099 ppm/mg*L-1		: 2.5856566429 V					Fluoride:	3.2617158889 Volts	Fluoride:	1.5468043327	
		Calcium :	1.1516631841	Volts Cal	lcium : 0.0000	000105 ppm/mg*L-1	I N03	: 2.5875618457 W	olts NO	3: 288	5.1166992187	ppm/mg*L-1	Fluoride:	3.2618112564 Volts	Fluoride:	1.5463411888	
						N900107 ppm/mg*L-1	I N03	: 2.5848731994 V	olts NO	3: 289	1.3356933593	ppm/mg*L-1	Fluoride:	3.2620008839 Volts	Fluoride:	1.545424938231171	l
						000113 ppm/ng*L-1		: 2.5924696922 V					Fluoride:	3.2618124485 Volts	Fluoride:	1.5463353157	1
						X000117 ppm/ng*L-1		: 2.5977816581 W						3.2617821693 Volts			
						N000123 ppm/mg*L-1		: 2.5939080715 V						3.2619690895 Volts			
		Calcium :	1.1486250162	Volts Cal	lcium : 0.0000	000099 ppm/ng*L-1	I N03	: 2.5881555880 V	olts NO	13: 278	6.4287109375	ppm/mg*L-1	Fluoride:	3.2619066238 Volts	Fluoride:	1.5458784103	

QUANTUM

Integration with HidroNic Desal and HidroNic Fert





Desert - Decision Support System

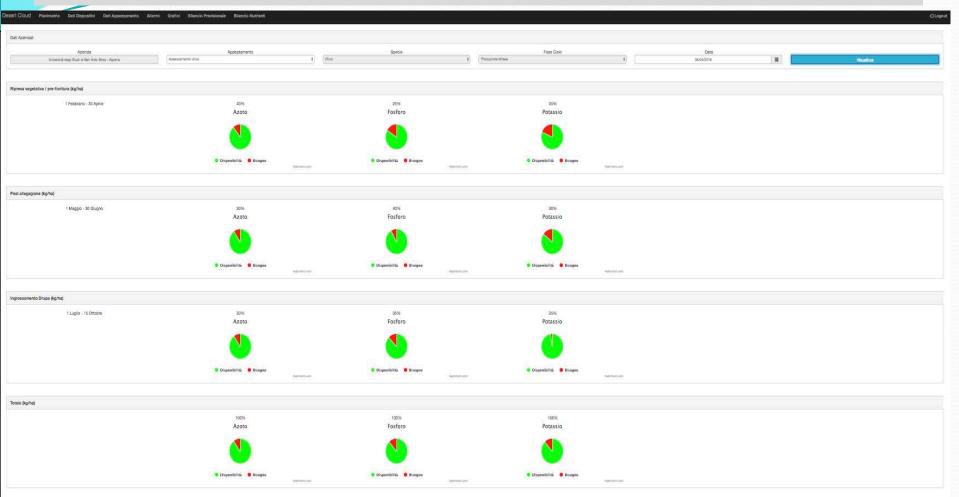
Azienda Aree Omogenee Dispositivi Allarmi Grafici

Benvenuto! Disconnetti

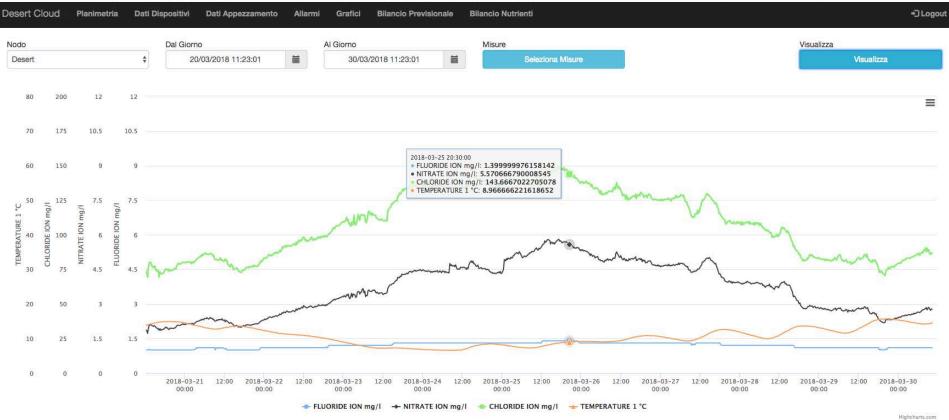
Vai alla lista degli appezzamenti

© 2018 - Intesis Srl

zienda	Nome	Superficie (ha)		
Jniversità degli Studi di Bari "Aldc	Olivo	10		
Crop characteristics	Specie	Fase Ciclo	Produzione Attesa (t/ha)	
Arboree	Olivo olive, legno e foglie	Piena Produzione	10	
oil characteristics				
osforo (ppm)	Sabbia (%)		Calcare Totale(%)	Azoto Totale (g/kg)
30	40		21	1,1
otassio (ppm)	Argilla (%)	Classe Tessitura		Sostanza Organica (%)
300	40	TendenzialmenteArgilloso		2
ofondità (cm)	Limo (%)	Ubicazione	Drenaggio	C/N
50	20	Pianura Limitrofa a Zone Urbanizz	Normale	10,5636361346757
Climatic parameters				
recipitazioni in mm dal 1/10 al 31/01	Apporto Ammendanti	N Anno Precedente (kg/ha)	Frequenza	
170	Ammendante	30	Ogni 3 anni	


Benvenutol Disconnetti									
Azienda	Aree Omogenea	Fase/Ciclo	Superficie (ha)	Produzione Attesa (t/ha)					
Università degli Studi di	Bari "Aldo Moro" Olivo	Piena Produzione	10	10					
÷	NECESSITA	N (kg/ha)	P205 (kg/ha)	K20 (kg/ha)					
A)	Fabbisogno della Coltura	248	48	200					
C)	Perdite per Lisciviazione	6	0	10					
D)	Immobilizzazioni e dispersioni	6	1	1					
B1)	Arricchimenti	0	0	0					
A2)	Anticipazioni anni futuri	0	0	0					
Totale Necessità		260	50	212					

	DISPONIBILITA	N (kg/hs)	P205 (kg/ha)	K2O (kg/ha)
B)	Fertilità del Suolo	24	0	508
E)	Precessione	0	1	1
F)	Fertilità Organica Residua	6	T	1
G)	Apporti Naturali	20	1	2
Totale Disponibilità		50	0	508


BISOGNO CALCOLATO	N (kg/ha)	P2Q5 (kg/ha)	K2O (kg/ha)
Totale	210	50	-296
	Dispenibilità Suolo Bisogne	 Disponibilità Suolo Bisogno 	 Disponibilità Suolo Bisogno

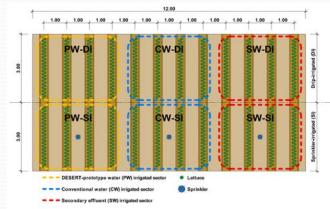
© 2018 - Intesis Srl

Azienda Aree Omogenee Dispositivi Allarmi Grafici

Benvenuto! Disconnetti

Lista delle concimazioni effettuate:

Date / Ora	Concime	Modalità Somministrazione	Titoli (kg/q)		kg/ha	Efficienza (%)			Somministrati			Operazioni	
Data / Ora	concine		N	P205	K20	NSI/110	Ň	P205	K20	N	P205	K20	Operazion
04/05/2018	Fertil MBS 9/14/13 +2+16+7,6	Granulare - Tre Somministrazioni	9	14	13	10	90	100	100	0,81	1,4	1,3	Elimina
07/09/2018	AZO TOP 18,5/0/0	Granulare - Unica Somministrazione	18,5	0	0	10	60	100	100	1,11	0	0	Elimina
01/03/2018	BELFRUTTO MB 5/10/15 +5+16	Per via Fogliare	5	10	15	10	100	100	100	0,5	1	1,5	Elimina
05/05/2018	Acido fosforico 85%	Fertirrigazione	0	61	0	10	100	100	100	0	6,1	0	Elimina


Aggiungi Modalità Somministrazione e Concime

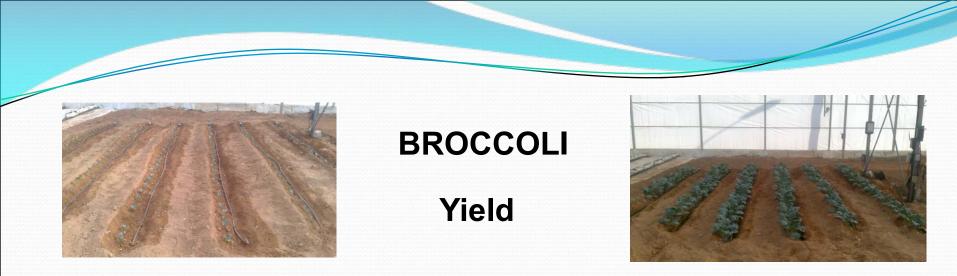
Giorno	Concime Mo	Modalità Somministraz	zione	Quantità	
05/05/2018	 Acido fosforico 85% AGRESTE ORG.MIN. 7,5/12/21 AGROFERT MB ORG.MIN. 10/5/15 +2+16 AGROFERT MBS O MIN. 9,5/5/14,5 +2+24 AZO TOP 18,5/0/0 	azione	ŧ	10	Aggiungi
Ritorna indietro	AZO TOP 18,5/0/0 +32 Azogold 40 N + 12 SO3 Azoplus 35 N + 22 SO3 BELFRUTTO MB 5/10/15 +5+16 BELFRUTTO MBS KG 25 ORG.MIN. 6/10/15	5	_		
© 2018 - Intesis Srl	Calciocianamide granulare Calciocianamide in polvere Cloruro di potassio Ferroumato				
	Fertil agreste start kg 50 10/12/7 Fertil MBS 9/14/13 +2+16+7,6 Fosfato biammonico 18-46 Fosfato biammonico 21-52 Fosfato monoammonico 12-61				
	Fosfato monoammonico 12-61 Fosfato monopotassico 0-52-34 Fosfato naturale tenero 0-27-0 Fosfato monoamm multi map Fosfato monopot multi mkp				
	Geomag mcr 0,2+5+0,5+0,5 Humofos 3/15/0 +16+8				

• WP3: DESERT irrigation water validation and agronomic assessment for fruit tree crops and soil quality monitoring

Physiological parameters	SPRINK	LER IRRIGATION	1 (SI)	DRIP IRRIGATION (DI)			
	Secondary RW (SW)	Irrigators Comnunity	DESERT	Secondary RW (SW)	Irrigators Comnunity	DESERT	
Α (µmol m⁻² s⁻¹)	19,94	17,58	16,65	20,64	21,67	20,94	
g _s (mmol m ⁻² s ⁻¹)	385, I	267,0	171,9	397,0	327,3	276,3	
WUE intrinsec (A/g _s)	51,8	65,8	96,9	52,0	66,2	75,8	

LETTUCE (var. Romana)

TOMATO



Yield and fruit quality

DESERT water reached the highest WP values with 17,4 Kg/m³.



Water productivity and yield

WATER QUALITY SOURCE	PLANT WEIGHT (g)	Yield (Kg/ha)	Water applied (m ³ / ha)	Water productivity (kg /m ³)	
Brine + Secondary RW	438,1 \pm 71,1 a	21905 ± 3555	1254	17,5	
DESERT	393,9 ± 63,6 a	19695 ± 3180	1254	15,7 (-10%)	

WATER QUALITY SOURCE	Yield (Kg / tree)	Yield (Kg/ha)	Water applied (m ³ / ha)	Water productivity (kg /m³)
Irrigators Community water	59,4	24750	4987,4	5,0
DESERT water	61,8	25750	4987,4	5,2 (+4%)

ORANGE ORCHARD

Fruit Quality

WATER QUALITY SOURCE	FRUIT WEIGHT (g)	FRUIT DIAMETER (mm)	PEEL THICKNESS (mm)	JUICE (mL)	SSC (°BRIX)	
CONTROL	235,9 ± 7,4 a	$76,9 \pm 0,8$ a	$4,25 \pm 0,09$ a	$126,9 \pm 4,1$ a	14,6 ± 0,19 a	
DESERT	264,5± 9,8 b	79,4 ± 0,9 b	$4,44 \pm 0,10$ a	141,9 ± 5,15 b	12,9 ± 0,39 b	
% increase by DESERT	12,1	3,2	4,6	11,9	-11,4	
Colour index: HUE and L slightly higher (1,9 and 0,9%)						

and less Chroma (-0.8%).

Olive trees - Oil quality

WATER QUALITY SOURCE	Fenols	Acidity	Peroxide	Chl
DW-FI	391c	0.23 ab	7.80 Ь	0.I7 b
DW-RDI	441 b	0.20 b	7.64 a	0.18 b
RW-FI	406 c	0.23 ab	8.52 c	0.18 b
RW-RDI	459 a	0.25 a	8.81 d	0.09 a

DW Desert Water RW Not treated water

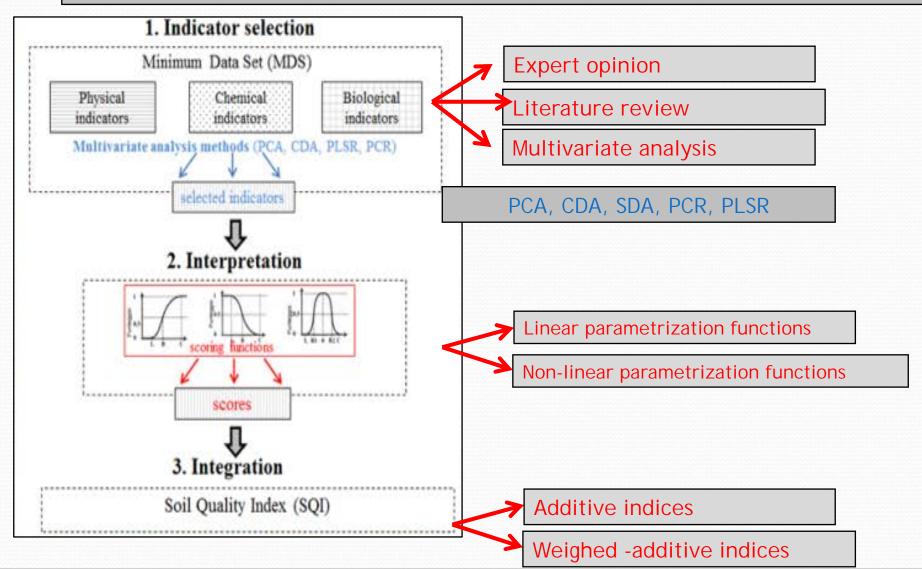
DW Ecw= 1.5 dS/m RW Ecw= 3.0 dS/m

Almond trees – leaves

WATER QUALITY SOURCE	Na	К	NTot
Ecw I.5 DW-FI	0.06 b	1.69 ab	2.03 a
Ecw1.5 DW-RDI	0.05 b	I.71 b	2.10 ab
Ecw 3.0 RW-FI	0.14 a	1.54 ab	2.34 bc
Ecw 3.0 RW-RDI	0.19 a	I.49 a	2.41 c

Ecw=1.5 dS/m

DW Desert Water RW Not treated water



Ecw= 3.0 dS/m

Task 2.1: Comparison of different methodological approaches to compute soil quality indices (SQIs)

SQIs allow to synthetize in a standardized value information brought by numerous soil indicators

A critical aspect is the choice of representative indicators for building the Minimum Data Set (MDS)

Task 2.1: Comparison of different methodological approaches to

compute soil quality indices - Results

water

- 1 Article
- 2 Application of multivariate analysis techniques for
- 3 selecting soil physical quality indicators: a case study
- 4 in long-term field experiments in Apulia (southern
- 5 Italy)
- 6 Mirko Castellini 1,*, Massimo Iovino 2 and Anna Maria Stellacci 3

AIMS:

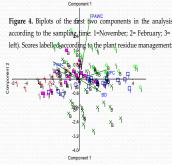


Figure 4. Biplots of the first two components in the analysis carried out on the whole dataset. Scores labelled

-Investigating soil variables selection with the use of different statistical approaches correlation, analysis, PCA and SDA, using datasets deriving from long-term field experiments. RESULTS:

Results highlighted the **complementary and supplementary role of the three data analyses procedures** applied (corr, PCA, SDA) and the **importance to use simultaneously different approaches** to have a **complete understanding of the processes investigated**.

RFC showed to have a crucial role among soil physical quality (SPQ) indicators, being **able to** synthetize part of the information given by **AC** and **PMAC**.

Task 2.2: Characterization of the soil spatial variability of the

experimental site - Results

Submitted to GEODERMA

Contribution of EMI and GPR proximal sensing data in soil water content assessment by

using linear mixed effects models and geostatistical approaches

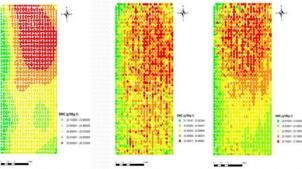
Emanuele Barca¹, Daniela De Benedetto^{2*}, Anna Maria <u>Stellacci^{2,3}</u>

AIMS

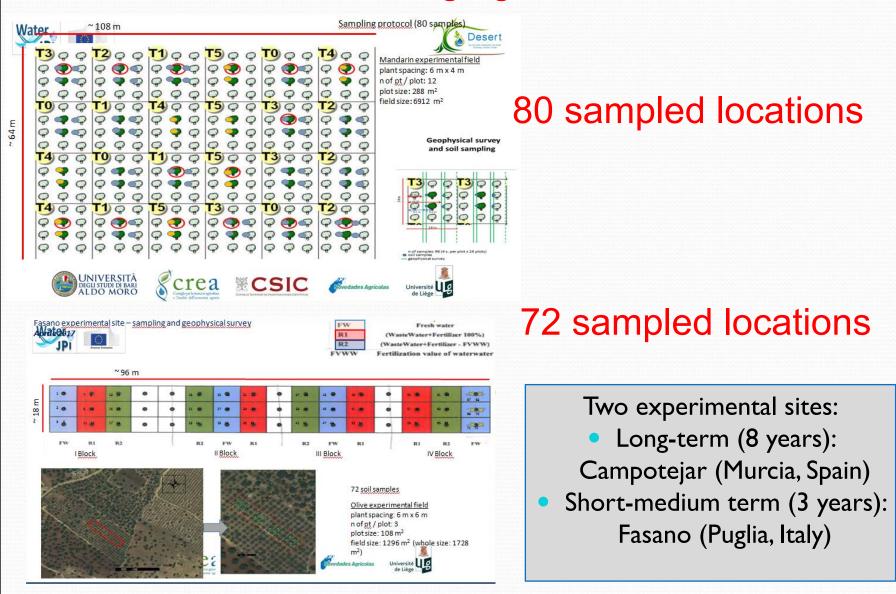
-investigating the single or combined contribution of EMI and GPR sensor data in soil water content (SWC) assessment;

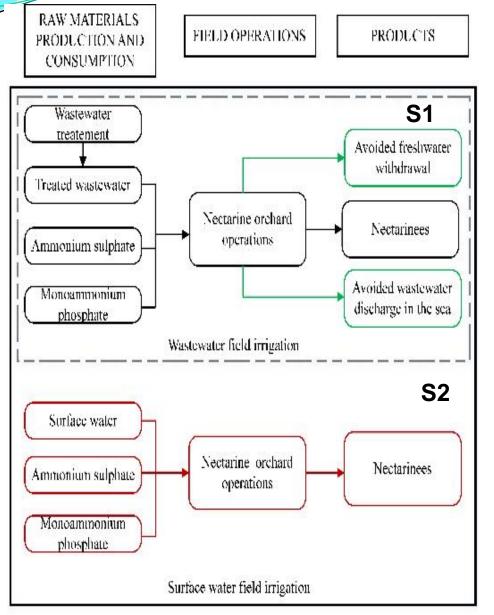
-comparing linear mixed effects models (LMM) and geostatistical approaches to estimate SWC.

MAIN FINDINGS


GPR was more effective than EMI in estimating soil water content (SWC).

The combined use of both data sources showed an even larger explaining capability with more accurate predictions of SWC.


LMM and geostatistical approaches proved to behave very similarly.


Proximal sensing information was able to explain the larger part of the spatial structure of SWC.

Characterization of the soil spatial variability of the experimental site – ongoing activities

WP4: Sustainability assessment, energy and cost efficiency of the DESERT system

The environmental impact assessment model is based on the Environmental Life cycle analysis framework

- Three-year study (2012–2014)
- Prunus persica L. Batsch
- Drip irrigation with SW and TMW

Functional unit:

1 kg of Nectarines

Scenario 1 \rightarrow Treated municipal wastewater

Scenario 2 \rightarrow Conventional water

VALUATION OF TREATED URBAN WASTE-WATER FOR IRRIGATION:

2. Collaboration, coordination and mobility

3. Stakeholder/industry engagement

4. Dissemination of the results

5. Identified problems or specific risks

2. Collaboration, coordination and mobility

Collaboration

Collaboration:

- Deep collaboration among partners

 New projects

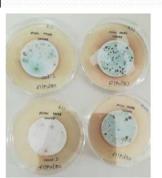
 H2020 - A digital platform for wATer quaLity AwareNess, Technologles and Solutions

 Agronym: ATLANTIS

PRIMA call - Efficient production and sustainable management of REclaimed wasteWATer and desalinated seawater in the MEDiterranean area Acronym: REWATMED

Erasmus Plus – NUCIF

Knoledge hub Agroalimentare y Agroindustria (water reuse in agriculture) With different Universities of South America


Collaboration

During the Mid Term Meeting of DESERT we invited the project coordinator of **IRIDA project**

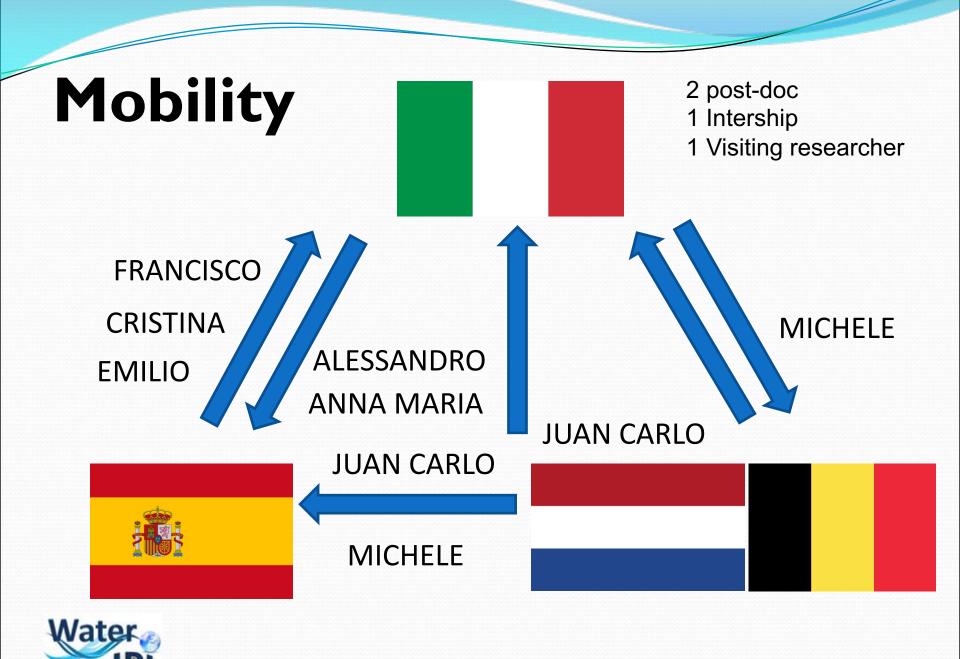
IWA Conference in California Poster With **MEPROWARE** Alfieri Pollice Project Coordinator

Collaboration wiith Dipartimento di Scienze Biomediche e Oncologia Umana (DIMO) Food Science, Clinical Chemistry, Epidemiology for microbilological analysis

2. Collaboration, coordination and mobility Coordination

Kick off meeting DESERT project 21st September 2016 - Bari - Italy

MID Term Meeting


April 2018 - Murcia - Spain

WaterWorks2014 Cofunded Call **Mid-Term Progress Report** Research and Innovation for Developing Technological Solutions and Services for Water Systems

Low cost water desalination and sensor technology compact module DESERT

MID TERM REPORT

Summary

I. Scientific and technological progress

2. Collaboration, coordination and mobility

3. Stakeholder/industry engagement

4. Dissemination of the results

5. Identified problems or specific risks

3. Stakeholder/industry engagement

DESERT technologies

To test the plant performance under different salt and nutrients loads

AGROMILLORA

<image>

Tertiary wastewater treatment plant of Bisceglie municipalty interested on QUANTUM system

Summary

I. Scientific and technological progress

2. Collaboration, coordination and mobility

3. Stakeholder/industry engagement

4. Dissemination of the results

5. Identified problems or specific risks

4. Dissemination of the results

• WP5: Dissemination on strategy and exploitation plan for transfer of knowledge and market uptake

Il Fatto Quotidiano 10 August 2017 National new paper

Students: ≈ 150

TGR 3 – Regional TV news report

Students of University of Wageningen visited experimental platform of CEBAS -CSIC

22nd October 2016 - Murcia - Spain

Seminar: Irrigation Water Management on Semi-Arid Climates: Strategies and Reuse" 22th September 2016 - Bari - Italy

CEBAS-CSIC, received the visit from staff of the Agriculture Department, State Govt. of Himachal Pradesh (India) 19th October 2016 - Murcia - Spain

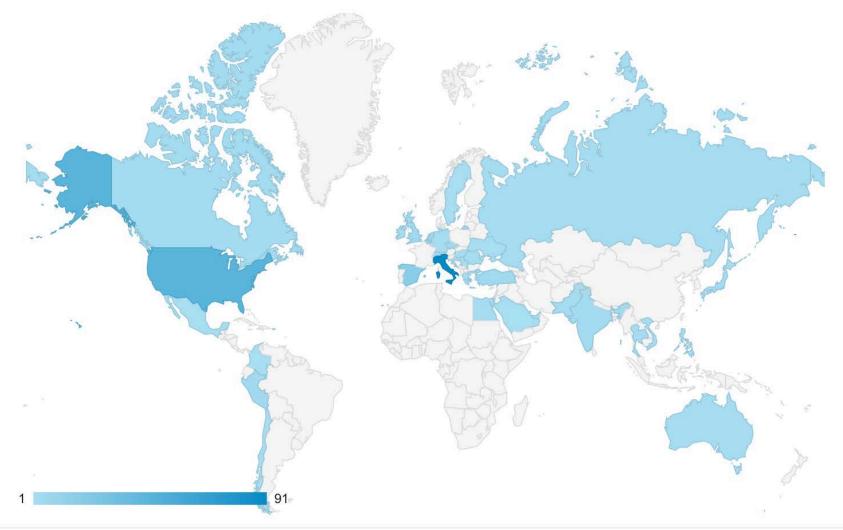
Workshop "Yout Innovating with Wastewater Workshop of the European Group of LIFE
for a Sustainable Mediterranean"ReQpro project21st-22nd March 2017 - Marseille - France 27th and 28th October 2016 - Murcia - Spain

Low-cost water desalination and sensor technology compact module

Home Project Partners Events Press review Multimedia Contacts

The DESERT technology can contribute to mitigate the negative effects of intensive surface and groundwater abstraction, improving water quality and increasing farmers' income through saving costs of energy

and reducing the water and fertilizers needs



www.desertproject.eu

www.desertproject.eu

38 Countries

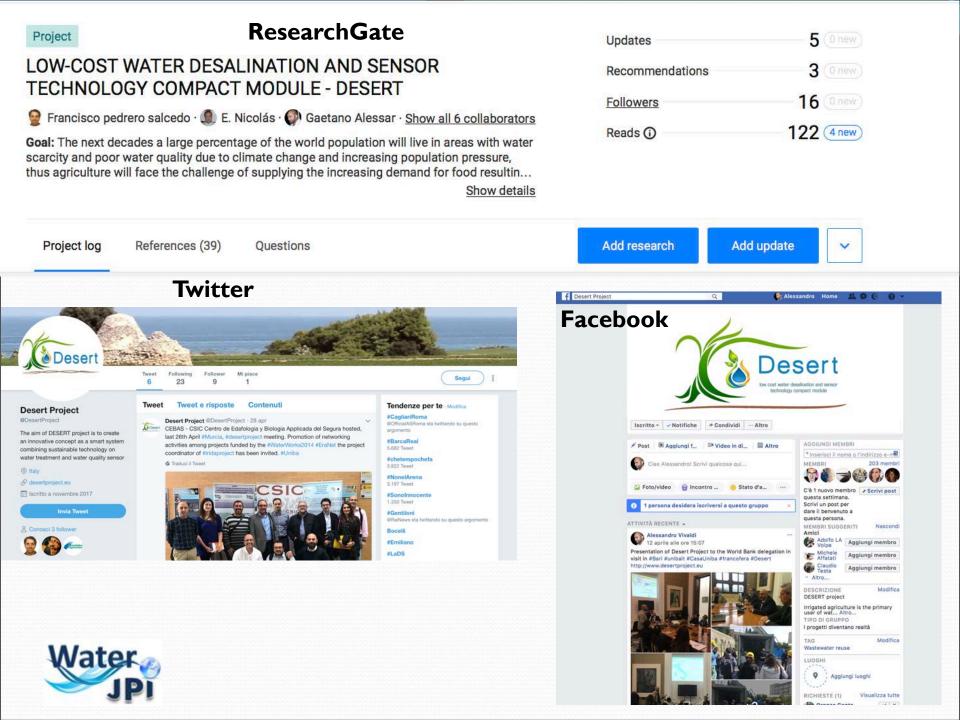
Source: google analytic

1.		Italy	90	(39,82%)	81	(37,85%)	184	(55,59%)	42,39%
2.		United States	44	(19,47%)	44	(20,56%)	48	(14,50%)	93,75%
3.	s	Spain	18	(7,96%)	17		(7,94%)	23	(6,95%)	26,09%
4.		Belgium	11	(4,87%)	11		(5,14%)	11	(3,32%)	72,73%
5.		Czechia	5	(2,21%)	5		(2,34%)	5	(1,51%)	100,00%
6.	64	Turkey	5	(2,21%)	5		(2,34%)	5	(1,51%)	60,00%
7.		United Kingdom	4	(1,77%)	3		(1,40%)	5	(1,51%)	40,00%
8.		Netherlands	4	(1,77%)	4		(1,87%)	5	(1,51%)	0,00%
9.		Peru	4	(1,77%)	4		(1,87%)	4	(1,21%)	100,00%
10.	•	Canada	3	(1,33%)	3		(1,40%)	3	(0,91%)	100,00%
11.		United Arab Emirates	2	(0,88%)	1		(0,47%)	2	(0,60%)	100,00%
12.	•	Australia	2	(0,88%)	2		(0,93%)	2	(0,60%)	50,00%
13.		Germany	2	(0,88%)	2		(0,93%)	2	(0,60%)	100,00%
14.	-	Egypt	2	(0,88%)	2		(0,93%)	2	(0,60%)	0,00%
15.	-	India	2	(0,88%)	2		(0,93%)	2	(0,60%)	50,00%
16.	•	Japan	2	(0,88%)	2		(0,93%)	2	(0,60%)	100,00%
17.	C	Pakistan	2	(0,88%)	2		(0,93%)	2	(0,60%)	0,00%
18.		Romania	2	(0,88%)	2		(0,93%)		(0,60%)	100,00%
19.	-	Russia	2	(0,88%)	2	Ş	(0,93%)	2	(0,60%)	google analytic

Prof. Steve Robert Grattan – UC California

Prof. Ing. LUIS ALBERTO LIMA MORRA MINISTRO PRESIDENTE DEL CONSEJO NACIONAL DE CIENCIA Y TECNOLOGÍA (CONACYT) Paraguay

4. Dissemination of the results Conference


IWA Regional Conference on Water Reuse and Salinity Management

11-15 June 2018. Murcia- Spain

iwaresa.com

Pubblished

- 1. Pedrero F et al., 2018. Use of reclaimed wastewater on fruit quality of nectarine in Southern Italy. Agriculture water management
- 2. Pedrero et al., 2017. Nutrient uptake and fruit quality in a nectarine orchard irrigated with treated municipal wastewaters.. Desalination and water treatment
- 3. Intriago et al., 2018. Agricultural Reuse of Municipal Wastewater through an Integral Water Reclamation Management. Journal of Environmental Management
- 4. Castellini M., Di Prima S., Iovino M., 2018. An assessment of the BEST procedure to estimate the soil water retention curve: A comparison with the evaporation method. **Geoderma**, 320, 82–94.
- 5. Vivaldi et al., 2017. Progetto DESERT, irrigazione sostenibile da fonti alternative. Fruit journal
- 6. Pedrero et al., 2017. Multidisciplinary approach on reclaimed water use projects in agriculture. Web

Submitted

- 1. Barca E., De Benedetto D., Stellacci A.M., 2018. Contribution of EMI and GPR proximal sensing data in soil water content assessment by using linear mixed effects models and geostatistical approaches. Submitted to Geoderma
- 2. Castellini M., Stellacci A.M., Iovino M., 2018. Application of multivariate analysis techniques for selecting soil physical quality indicators: a case study in long-term field experiments in Apulia (southern Italy). Submitted to **Water**.

Preparing

- 1. Moretti et al., 2018. Modelling environmental impacts of treated municipal wastewater reuse for tree crops irrigation in the mediterranean coast. The International Journal of Life Cycle Assessment
- 2. Pedrero et al., 2018. Opportunities for expanding the use of waste waters for irrigation of olives. Irrigation Science.
- 3. Intrigliolo et al., 2018. Effects of full and deficit irrigation on yield and grape composition of cv. Bobal grapevines in semi-arid terroirs of eastern Spain. Agricultural water management.

Conference

1. Nicolás E. Usos del agua depurada en Agricultura. III Jornadas Campesinas. Bullas (Murcia). June 2016.

2.Nicolás E. Respuesta de cultivos leñosos al riego con agua depurada. **Training courses** about "Especialización en Riego Deficitario. Implementación de una gestión eficiente del riego para una agricultura sostenible". Centro Integrado de Formación y Experiencias Agrarias (CIFEA). Molina de Segura (December 2016), Torre Pacheco (February 2017) and Jumilla (March 2017).

3. Nicolás E. Caracterización físico-química y microbiológica de las aguas regeneradas de la EDAR de Jumilla. Aspectos generales y recomendaciones de uso. **Irrigators Community of Miraflores** in Jumilla (Murcia) (CIFEA). March 2017.

4. Nicolás E. Sensores, robótica y big data en la gestión del fertirriego. **Jornadas FAME-INNOWA**. Foro de conocimiento e innovación agrícola. IFEPA. Torre Pacheco (Murcia). March 2017.

5. Nicolás E. Reutilización en el ámbito agrícola, experiencia CR Miraflores. Jornadas LIFE SIAMEC. Murcia. June 2017.

6. Nicolás E. Caracterización físico-química y microbiológica de las aguas regeneradas de la EDAR de Jumilla. Aspectos generales y recomendaciones de uso. **Jornadas LIFE IRRIMAN**. Jumilla (Murcia). December 2017.

7. Nicolás E. Procesos y consideraciones para la reutilización de aguas regeneradas en riego agrícola. Caso práctico. **Jornada «La regeneración de agua para riego en Andalucía: Una alternativa sostenible»**. FERAGUA. Sevilla. March 2018.

National Congress

1.Lorente B., Zugasti I., Luna A., Ortuño MF., Sánchez-Blanco MJ., Nicolás E, Nortes P., Alarcón JJ. Efecto del medio de cultivo en el comportamiento hídrico, nutricional y productivo de plantas de tomate regadas con aguas regeneradas con altos niveles de salinidad. XXXVI Congreso Nacional de Riegos (Valladolid). June 2018.

2.G.A. Vivaldi, F.P. Salcedo, M.A. Mastro, S. Camposeo Vivaldi. Innovativo sistema di supporto alle decisioni per il riuso sostenibile di acque reflue urbane in olivicoltura. IV Convegno Nazionale dell'Olivo e dell'Olio. 18 Ottobre 2017

Summary

I. Scientific and technological progress

2. Collaboration, coordination and mobility

3. Stakeholder/industry engagement

4. Dissemination of the results

5. Identified problems or specific risks

5. Identified problems or specific risks

In the desalination part, the process of setting up the prototype of Roldan and its first phase of experimentation, has given us as results, **rapid fouling of the ultrafiltration membrane** due to the high rate in incoming water of:

- Dissolved solid
- Organic componets

This in a very short time, has resulted in an excessive clogging of the ultrafiltrate membrane, causing its saturation, and a great loss of pressure, which has required several chemical cleaning processes.

To solve these problems the following actions have been taken:

1. <u>Installation of a 1 micron microfiltration</u> cartridge, as a measure of retention before microfiltration, to retain particles or biofilms of organic origin.

2. <u>Modify the flow that is drained in the filtration process</u> to twice the expected, passing to 250 I / h of cross-flow, thus achieving a considerable **increase in the time between chemical cleanings**, not having to be done before 40 hours of operation, giving us in our test a frequency of 1 cleaning per month.

<u>3. To be able to carry out the chemical cleaning of the ultrafiltration membrane in situ.</u> Design and installation of a new chemical cleaning system, consisting of a tank for the chemical preparation of the cleaning solution, hydraulic lines and a pumping system, as well as an additional programming in the control automation to carry out the process.

1st Problem

2nd Problem Malfunctioning of 8 probes holders

Thank you for your attention

